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Abstract
We use the Gutzwiller variational many-body theory to investigate the stability
of orbitally ordered states in a two-band Hubbard model without spin degrees of
freedom. Our results differ significantly from earlier Hartree–Fock calculations
for this model. The Hartree–Fock phase diagram displays a large variety of
orbital orders. In contrast, in the Gutzwiller approach orbital order only appears
for densities in a narrow region around half filling.

1. Introduction

The investigation of orbital degrees of freedom has become an important field in theoretical
solid-state physics over the past two decades. There are a number of materials which are
believed to show phase transitions with orbital order parameters. Among them, the perovskite
manganites, e.g. La1−x Srx MnO3, have attracted particular interest because of the colossal
magnetoresistance behaviour which is observed in these materials. In theoretical studies on
manganites, one often neglects the almost localized Mn t2g orbitals and investigates solely
the electronic properties of a systems with two eg orbitals per lattice site. In order to study
the ferromagnetic phase of such a model, Takahashi and Shiba [1] further neglected the spin
degrees of freedom, because Hund’s rule coupling is assumed to align the spins in the two
eg orbitals.

The mean-field study in [1] found a surprisingly large number of stable orbitally ordered
phases for the spinless eg model. However, it is well known that mean-field approximations
tend to overestimate the stability of ordered phases in correlated electron systems. Therefore,
the purpose of this work is to reinvestigate the two-orbital Hubbard model without spin degrees
of freedom by means of the Gutzwiller variational many-body theory.

Our paper is organized as follows. The Hamiltonian and the different types of order
parameters that we are going to investigate are discussed in section 2. In section 3 we
introduce Gutzwiller wavefunctions and derive an approximate expression for the variational

3 During the final stage of proofreading for this work Patrik Fazekas died on 16 May 2007.
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Figure 1. Density of states of the model system (4).

ground-state energy. Numerical results are presented in section 4 and a brief summary closes
our presentation in section 5.

2. Model system and types of order parameters

We investigate a two-orbital (eg-type) Hubbard model [2] without spin degrees of freedom,

Ĥ = Ĥ0 + ĤU , (1)

Ĥ0 ≡
∑

i, j

2∑

b,b′=1

tb,b′
i, j ĉ†

i,bĉ j,b′, (2)

ĤU ≡ U
∑

i

n̂i,1n̂i,2 . (3)

Here, the tight-binding parameters tb,b′
i, j describe hopping processes between orbitals b, b′ on

cubic lattice sites Ri and R j , respectively. The Hamiltonian (1) is formally equivalent to the
standard one-band Hubbard model if the indices b, b′ are regarded as spins. However, the tight-
binding parameters in (2) would be unusual for a genuine one-band model, since they contain
inter-orbital hopping terms. The Hubbard parameter U in (3) is derived from U = U ′ − J ,
where U ′ and J are the Coulomb and the exchange interaction between electrons in different
eg orbitals.

We restrict our investigation to systems with only nearest-neighbour hopping, since
additional hopping terms would only destabilize the orbital order in which we are interested.
For eg orbitals |z1〉 ≡ |x2 − y2〉, |z2〉 ≡ |3z2 − r 2〉 and hopping parameters tddσ = 1 eV and
tddδ = 0 eV [3], the one-particle Hamiltonian in momentum space reads

Ĥ0 =
∑

k

∑

b,b′
ε

b,b′
z;k ĉ†

z;k,bĉz;k,b′ , (4)

with [3]

ε
1,1
z;k = (cos (kx) + cos (ky) + 4 cos (kz))/2,

ε
2,2
z;k = 3(cos (kx) + cos (ky))/2, (5)

ε
1,2
z;k = −√

3(cos (kx) − cos (ky))/2 = ε
2,1
z;k .

The k-integrated density of states D(ε) that results from this band structure is shown in figure 1.
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For our investigation of orbital order we need to introduce two more basis representations
of the orbital space,

|x1〉 ≡ 1√
2
(|z1〉 + |z2〉),

|x2〉 ≡ 1√
2
(|z1〉 − |z2〉),

(6)

and

|y1〉 ≡ 1√
2
(|z1〉 + i|z2〉),

|y2〉 ≡ 1√
2
(|z1〉 − i|z2〉).

(7)

The dispersion relations in momentum space for the ‘x’-basis and the ‘y’-basis become

ε
1,1
x;k = ((2 − √

3) cos (kx) + (2 + √
3) cos (ky) + 2 cos (kz))/2,

ε
2,2
x;k = ((2 + √

3) cos (kx) + (2 − √
3) cos (ky) + 2 cos (kz))/2,

ε
1,2
x;k = (cos (kx) + cos (ky) − 2 cos (kz))/2 = ε

2,1
x;k,

(8)

ε
1,1
y;k = cos (kx) + cos (ky) + cos (kz) = ε

2,2
y;k,

ε
1,2
y;k = ((1 + √

3i) cos (kx) + (1 − √
3i) cos (ky) − 2 cos (kz))/2,

ε
2,1
y;k =

(
ε

1,2
y;k

)∗
.

(9)

The interaction term (3) has the same form for all three basis representations ξ = x, y, z.
We describe orbital order in our model system (1) through the parameters

τξ ;i ≡ (〈n̂i,ξ1〉 − 〈n̂i,ξ2 〉)/2 , (10)

n̂i,ξb ≡ ĉ†
i,ξb

ĉi,ξb
, (11)

for each of the three representations ξ . By using the Pauli matrices 1̃, τ̃ x , τ̃ y, τ̃ z , the order
parameter can also be written as (compare [1])

τξ ;i = 1
2

∑

b,b′
〈ĉ†

i,zb
(τ̃ ξ )b,b′ ĉi,zb′ 〉 . (12)

Besides the orbital character of the order parameter, we need to specify its lattice site
dependence. Following [1] we consider orders of the form

τξ ;i = τξ,0 exp (iQRi) (13)

with commensurate vectors Q which belong to the � point (Q = (0, 0, 0)), the R point
(Q = (π, π, π)), the X point (Q = (0, 0, π)), and the M point (Q = (π, π, 0)). The real
parameter τξ,0 in (13) is independent of the lattice site vector Ri and is assumed to be positive.
Note that, for vectors Q �= (0, 0, 0), equation (13) divides the lattice into an ‘A’-lattice with a
majority ξ1 occupation (τξ ;i > 0) and a ‘B’-lattice with a majority ξ2 occupation (τξ ;i < 0).

3. Gutzwiller wavefunctions

3.1. Definitions

For an investigation of the Hamiltonian (1), we use Gutzwiller variational wavefunctions [4]
which are defined as

|
G〉 ≡
∏

i

P̂i |
0〉 . (14)

3
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Here, |
0〉 is a normalized quasi-particle vacuum and the local correlator has the form

P̂i =
∑

I

λi,I m̂i,I (15)

where m̂ I = |I 〉〈I | projects onto the four local configuration states |I 〉, i.e. the empty state |∅〉,
the doubly occupied state |d〉 and the two single-electron states |ξ1〉 and |ξ2〉. Note that |ξ1〉 and
|ξ2〉 depend on the orbital representation ξ , whereas the states |∅〉 and |d〉 are invariant under
the orbital transformations (6) and (7). For the variational parameters λi,I , we make an ansatz
which is consistent with the spatial symmetry of the order parameter,

λi,∅ = λ∅, (16)

λi,d = λd , (17)

λi,ξ1 = λs + δλs exp (iQRi), (18)

λi,ξ2 = λs − δλs exp (iQRi), (19)

where the parameters λ∅, λd , λs , δλs are independent of the lattice site vector Ri .
A more general ansatz for the Gutzwiller correlator P̂ which also includes non-diagonal

configuration transfer operators |I 〉〈I ′| has been studied in [5]. As we will see below
(section 3.2), it is sufficient for our calculations in this work to consider only diagonal operators
in P̂i .

3.2. Evaluation in infinite dimensions

For any practical use of a variational wavefunction it is essential that the expectation value of the
Hamilton can be calculated. However, despite the simplicity of the Gutzwiller wavefunction,
the evaluation of

Evar = 〈Ĥ 〉
G (20)

poses a difficult many-particle problem that cannot be solved in general. Gutzwiller introduced
an approximate evaluation scheme that was based on quasi-classical counting arguments. More
recent derivations of this approximation can be found in [6, 7]. Analytically exact evaluations
were later found to be possible in one dimension [8–10] and in infinite spatial dimension [11].
The results of the latter evaluation turned out to be equivalent to the Gutzwiller approximation
for systems which can be studied within this approach. The evaluation scheme in infinite
dimensions was later generalized for the investigation of multi-band Hubbard models [12] and
superconducting systems [5, 13]. We will use these exact results in infinite dimensions as an
approximation in order to evaluate expectation values of our Hamiltonian (1).

We only consider single-particle wavefunctions |
0〉 in (14) for which the local density
matrix C̃0 with the matrix elements

C0
i,ξb ,ξb′ ≡ 〈ĉ†

i,ξb
ĉi,ξb′ 〉
0 ≡ n0

i,ξb
δb,b′ (21)

is diagonal with respect to b, b′. Finite non-diagonal elements in C̃0 could only appear if we
were mixing different order parameters.

As shown in [5], the four parameters λi,I for a lattice site i have to obey the constraints

1 = 〈P̂2
i 〉
0 , (22)

C0
i,ξb ,ξb′ = 〈P̂2

i ĉ†
i,ξb

ĉi,ξb′ 〉
0 . (23)

Our correlation operator (15) automatically fulfils the constraints (23) for b �= b′. This is the
reason why it was allowed in the first place to include only diagonal operators m̂i,I in (15).
Consequently, instead of (23) we only need to consider the diagonal constraints

n0
i,ξb

= 〈P̂2
i n̂i,ξb 〉
0 . (24)

4
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All constraints can be solved explicitly if we use the results for local expectation values

mi,I ≡ 〈m̂i,I 〉
G = λ2
i,I 〈m̂i,I 〉
0 (25)

which hold in infinite spatial dimensions. With (25) we can use the expectation values mi,I as
new variational parameters instead of λi,I . The constraints then read

1 = mi,∅ + mi,d + mi,ξ1 + mi,ξ2 , (26)

n0
i,ξb

= mi,ξb + mi,d , (27)

and they can be solved readily by expressing all local occupancies in terms of the average
numbers of doubly occupied sites mi,d :

mi,∅ = 1 − n0
i,ξ1

− n0
i,ξ2

+ mi,d , (28)

mi,ξb = n0
i,ξb

− mi,d . (29)

Apart from the still unspecified one-particle wavefunction |
0〉 and the corresponding local
density matrices C̃0

i , the probabilities mi,d are the only remaining variational parameters. Note
that (29) leads to

ni,ξb ≡ 〈n̂i,ξb 〉
G = n0
i,ξb

(30)

for the orbital densities in the correlated Gutzwiller wavefunction. We skip the explicit
declaration of the orbital representation ξ for the rest of this chapter and write b instead of
ξb in all indices.

In infinite dimensions the expectation value of the one-particle Hamiltonian (2)
becomes [12]

E0 = 〈Ĥ0〉
G =
∑

i, j

∑

b,b′

√
qi,bq j,b′ tb,b′

i, j 〈ĉ†
i,bĉ j,b′ 〉
0 ≡ 〈Ĥ ′

0〉
0 , (31)

where we introduced the well-known Gutzwiller loss factors [4]

qi,b = 1

n0
i,b(1 − n0

i,b)
(
√

mi,∅mi,b + √
mi,b̄mi,d)

2, (32)

and b̄ is defined via 1̄ ≡ 2 and 2̄ ≡ 1.
The lattice symmetry of the order parameter leads to further simplifications. We introduce

the majority and the minority orbital densities

n0
± ≡ n0 ± τ0 (33)

such that

n0
i,1 = n0

± n0
i,2 = n0

∓ . (34)

The upper and lower signs in (34), and in the corresponding equations below, belong to lattice
sites i ∈ A and i ∈ B , respectively. For the other local expectation values we find

mi,d = md , (35)

mi,1 ≡ m± = n0
± − md, (36)

mi,2 ≡ m∓ = n0
∓ − md, (37)

mi,∅ = 1 − 2n0 + md . (38)

A similar notation is introduced for the q-factors

qi,1 ≡ q±, qi,2 ≡ q∓ (39)

where

q± ≡ 1

n0±(1 − n0±)
(
√

m∅m± + √
m∓md)

2. (40)
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The expectation value (31) splits into four components

E0 = q+E++ + q−E−− + √
q+q−(E+− + E−+) (41)

which belong to the four different hopping channels between majority (‘+’) and minority (‘−’)
states. In momentum space, the one-particle expectation values in (41) can be written as

Eωω′ = 1
4

∑

k

∑

b,b′
εbb′

k

(
M1

b,b′ 〈ĉ†
k,bĉk,b′ 〉
0 + ωM2

b,b′ 〈ĉ†
k+Q,bĉk,b′ 〉
0 (42)

+ ω′M3
b,b′ 〈ĉ†

k,bĉk+Q,b′ 〉
0 + ωω′M4
b,b′ 〈ĉ†

k+Q,bĉk+Q,b′ 〉
0

)
,

where ω,ω′ represent the + or − signs and the coefficients Mγ

b,b′ are given as the elements of
the matrices

M̃1 =
(

1 1
1 1

)
, M̃2 =

(
1 1

−1 −1

)
,

M̃3 =
(

1 −1
1 −1

)
, M̃4 =

(
1 −1

−1 1

)
.

(43)

For the evaluation of the expectation values in (42), we need to determine the one-particle
wavefunction |
0〉. Following [5, 14], |
0〉 is given as the ground state of the effective one-
particle Hamiltonian

Ĥ eff
0 = Ĥ ′

0 − η
∑

i

exp (iQRi)(n̂i,1 − n̂i,2) , (44)

where Ĥ ′
0 was introduced in (31) and the term proportional to the variational parameter η allows

us to vary the order parameter τ0.
In this work, we only aim to investigate the stability of the orbitally unordered state.

Therefore we just need to analyse the energy expression (41) for small values of the order
parameter τ0. An expansion of the q-factors (40) up to second order in τ0,

q± ≈ q̃0 ± q̃1τ0 + q̃2τ
2
0 (45)

yields

√
q+q− ≈ q̃0 +

(
q̃2 − q̃2

1

2q̃0

)
τ 2

0 . (46)

Note that the coefficients q̃γ are still functions of n0 and md . To leading order in τ0, the effective
Hamiltonian (44) becomes

Ĥ eff
0 = q̃0

∑

k

∑

b,b′
ε

b,b′
k ĉ†

k,bĉk,b′ − η
∑

k

(
ĉ†

k,1ĉk+Q,1 − ĉ†
k,2ĉk+Q,2

)
(47)

since we can set qi,b = q̃0 in Ĥ ′
0, equation (31). The one-particle Hamiltonian (47) is

easily diagonalized numerically. This diagonalization yields the coefficients in the quadratic
expansion of (42)

E±± = E0 + E2τ
2
0 , (48)

E±∓ = E ′
0 + E ′

2τ
2
0 , (49)

and, consequently, of the variational ground-state energy

Evar = q̃0 E tot
0 +

(
q̃0 E tot

2 + q̃2 E tot
0 − E ′

0

q̃2
1

q̃0

)
τ 2

0 + Umd . (50)
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Figure 2. Critical interaction strength in Hartree–Fock-theory for the orders τ
y
R (straight), τ z

M

(dashed), τ z(x)
� (long-dashed), τ y

M (dotted), and τ x
X (dash–dotted). These phases are not stable within

the Gutzwiller theory.

Here, we introduced

E tot
γ ≡ 2(Eγ + E ′

γ ) (51)

for γ = 0 or 2. The minimization of Evar with respect to md can be carried out for τ0 = 0

E tot
0

∂ q̃0

∂md

∣∣∣∣
md=m̄d

+ U = 0 (52)

and determines the optimum number m̄d of doubly occupied sites as a function of U and n0.
This allows expansion of the variational energy purely in terms of τ0:

Evar = q̃0 E tot
0 + cτ0τ

2
0 . (53)

A negative sign of the coefficient

cτ0 = q̃0 E tot
2 + q̃2 E tot

0 − E ′
0

q̃2
1

q̃0
= cτ0(U, n0) (54)

in (53) indicates the instability of the unordered state. Note that a positive cτ0 does not
necessarily prove the stability of the unordered state, since it does not exclude first-order
transitions.

In Hartree–Fock theory, a quadratic expansion of the ground-state energy leads to

EHF
var = E tot

0 + (E tot
2 − U)τ 2

0 , (55)

and the critical interaction strength in this approach is therefore given as

U HF
C = E tot

2 . (56)

4. Results

In figures 2 and 3 we show the critical interaction strength (56) in Hartree–Fock theory as a
function of density for the various types of orbital order introduced in section 2. Our data agree
very well with those reported in [1]. Note that in Hartree–Fock theory the critical interaction
strength is finite for all densities n0 > 0 and diverges only in the limit n0 → 0.
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X (dash–dotted).
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Figure 4. Critical interaction strength in Gutzwiller theory for the orders τ
y
�(X) (straight),

τ
z(x)
R (dashed), τ x

M (dotted), and τ z
X (dash–dotted). The arrows indicate the critical densities 2n0

c for
U → ∞.

The phases in figure 2 are not stable within our correlated Gutzwiller approach for all
densities and interaction parameters. This holds in particular for the order parameter τ

y
R which

has surprisingly small critical values U HF
C around quarter filling, 2n0 ≈ 0.5.

For the four surviving phases (figure 3) we show the ratio U GW
C /U HF

C of the critical
parameters in the Gutzwiller and Hartree–Fock theories as a function of density in figure 4.
Apparently, there is only a narrow window of densities around half filling, 2n0 ≈ 1, where
orbital order occurs in the Gutzwiller theory. This is in stark contrast to the Hartree–Fock
findings in figure 3. For three of the phases the orbital order may disappear again if U
exceeds some second critical value Ũ GW

C > U GW
C . This behaviour is also different from the

Hartree–Fock theory in which the orbital order is stable for all U > U HF
C . Mathematically, the

appearance of the second critical parameter Ũ GW
C is due to the fact that q̃2 in (45) has a minimum

as a function of md . Hence, the coefficient cτ0 may have one or two roots as a function of U ,
depending on the other parameters in (54). The appearance of the second transition is therefore

8
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a genuine many-particle effect. Only one of the four orders, τ x
M , is unstable in the limit U → ∞

for all densities. For the three other orders, we find critical densities n0
c with a stable order for

all n0 > n0
c in the limit U → ∞. The values of n0

c are displayed by arrows in figure 4.
The failure of Hartree–Fock theory to describe the orbitally ordered phases of the two-

band model is not surprising. It is well known, for example, that Hartree–Fock theory also
grossly overestimates the stability of ferromagnetic ground states in the one-band Hubbard
model [15]. Ferromagnetism in this model requires very peculiar densities of states or very
large local Coulomb interactions [16]. The simple Stoner criterium of the Hartree–Fock theory,
however, predicts ferromagnetism for all densities and for small Coulomb interactions.

Orbital order in the two-band model at infinite U has also been investigated in [17]. In
their work the authors report a complete disappearance of all types of orbital order seen in the
Hartree–Fock theory.

5. Summary

We have reported results for orbital order in a two-orbital Hubbard model without spin degrees
of freedom. In a previous work which was based on Hartree–Fock calculations, this system
seemed to exhibit a surprisingly large variety of orbitally ordered phases. In our study in this
work we have employed the Gutzwiller variational theory, which is known to be more reliable
than the Hartree–Fock theory for systems with medium to strong local Coulomb interaction.
Most of the phases found in the Hartree–Fock approach turned out to be unstable in the
Gutzwiller theory. Orbital order only appears for densities near half filling in our calculation.
Unlike in Hartree–Fock theory, it may happen that an orbitally ordered phase which is stable
for correlation parameters U > U GW

C becomes unstable again if U exceeds a second critical
value Ũ GW

C > U GW
C . This second transition is a genuine many-particle effect.

Our findings show that the stability of phases with broken symmetry for correlated electron
systems can be grossly overestimated by the Hartree–Fock mean-field theory. It is quite likely
that similar problems appear in LDA + U calculations where the local Coulomb interaction is
also treated on a Hartree–Fock level.
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